

Date Planned ://	Daily Tutorial Sheet-3	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

31.	Λ τουστα	ible reco	tion ic	one which	
31.	A revers	ibie reac	mon is	one which	:

(A) Proceeds in both directions **(B)** Proceeds in one directions

(C) Proceeds spontaneously **(D)** All the above statements are wrong

32. In a reaction, the rate of reaction is proportional to its active mass. This statement is known as:

(A) Law of mass-action **(B)** Le-Chatelier principle

(C) Faraday law of electrolysis (D) Law of constant proportion

In the equilibrium, $AB(s) \rightleftharpoons A(g) + B(g)$, if the equilibrium concentration of A is doubled, the 33. equilibrium concentration of B would become :

Half (A)

(B) Twice

1 / 4th (C)

1 / 8th (D)

34. According to law of mass action, for the reaction : $2A + B \longrightarrow Products$

(A) Rate = k[A][B] (B) Rate = $k[A]^2$ [B]

Rate = $k[A][B]^2$ (C)

(D) Rate = $k [A]^{1/2} [B]$

35. For the system; $3A + 2B \rightleftharpoons C$, the expression for equilibrium constant is :

 $\frac{\begin{bmatrix} \mathbf{A} \end{bmatrix}^{\mathbf{S}} \begin{bmatrix} \mathbf{B} \end{bmatrix}^{\mathbf{Z}}}{\begin{bmatrix} \mathbf{C} \end{bmatrix}} \qquad \textbf{(B)} \qquad \frac{\begin{bmatrix} \mathbf{C} \end{bmatrix}}{\begin{bmatrix} \mathbf{A} \end{bmatrix}^{\mathbf{S}} \begin{bmatrix} \mathbf{B} \end{bmatrix}^{2}} \qquad \textbf{(C)} \qquad \frac{\begin{bmatrix} \mathbf{3} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{2} \mathbf{B} \end{bmatrix}}{\begin{bmatrix} \mathbf{C} \end{bmatrix}} \qquad \textbf{(D)} \qquad \frac{\begin{bmatrix} \mathbf{C} \end{bmatrix}}{\begin{bmatrix} \mathbf{3} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{2} \mathbf{B} \end{bmatrix}}$

36. 5 mole of X are mixed with 3 moles of Y. At equilibrium for the reaction, $X + Y \rightleftharpoons Z$, 2 moles of Z are formed. The equilibrium constant for the reaction will be:

(C)

(A) 2/3 (B)

3/2

(D) 1/4

37. The equilibrium constant in a reversible reaction at a given temperature :

1/2

(A) Does not depend on the initial concentrations

(B) Depends on the initial concentrations of the reactants

(C) Depends on the concentration of the products at equilibrium

(D) It is not a characteristic of the reaction

(B)

38. For the reaction, $Fe(s) + S(s) \rightleftharpoons FeS(s)$ the expression for equilibrium constant is:

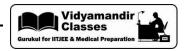
[FeS] (A) [Fe][S]

[FeS]

(C)

[Fe] [S] [FeS]

(D) None of these


39. For which of the following reactions, does the equilibrium constant depend on the units of concentration?

 $NO(g) \Longrightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ (A)

 $Zn(s) + Cu_{(aq)}^{2+} \rightleftharpoons Cu(s) + Zn^{2+}(aq)$ (B)

 $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$ (C)

(D) $C_2H_5OH(\ell) + CH_3COOH(\ell) \rightleftharpoons CH_3COOC_2H_5(\ell) + H_2O(\ell)$

- 40. On a given condition, the equilibrium concentration of HI, H2 and I2 are 0.80, 0.10 and 0.10 mol/L. the equilibrium constant for the reaction, $H_2 + I_2 \Longrightarrow 2HI$ will be :
 - (A) 8
- **(B)** 16
- (C) 32
- (D) 64
- 41. The unit of equilibrium constant, K for the reaction, $A + B \rightleftharpoons C$, would be :
 - $\bmod \ L^{-1}$ (A)
- (B) mol L
- (C) $L \text{ mol}^{-1}$
- **(D)** Dimensionless
- **42**. In the reaction, $A + 2B \rightleftharpoons 2C$, if 2 moles of A, 3.0 moles of B and 2.0 moles of C are placed in a 2 L flask and the equilibrium concentration of C is 0.5 mol/L, the equilibrium constant (Kc) for the reaction is:
 - (A) 0.21
- **(B)** 0.50
- (C) 0.75
- (D) 0.05
- 43. In which one of the following gaseous equilibrium, Kp is less than Kc?
 - $N_2O_4(g) \Longrightarrow 2NO_2(g)$ (A)
- $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$
- $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ (C)
- (D) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
- The equilibrium constant for the reaction $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ is K then the equilibrium 44. constant for the equilibrium, $\mathrm{NH_3} \left(g \right) = \frac{1}{2} \mathrm{N_2} \left(g \right) + \frac{3}{2} \mathrm{H_2} \left(g \right)$ is :
 - (A)

- **(B)** \sqrt{K} **(C)** $\frac{1}{K^2}$ **(D)** $\frac{1}{\sqrt{K}}$
- For the reaction, 2NO₂(g) \rightleftharpoons 2NO(g) + O₂(g), $K_c = 1.8 \times 10^{-6}$ at $185^{\circ}C$, the value of K_c for the reaction **45**. $NO(g) + \frac{1}{2}O_2(g) \rightleftharpoons NO_2(g)$ is :
 - 0.9×10^{6} (A)
- (B) 1.9×10^{6}
- (C) 7.5×10^2
- **(D)** 5.7×10^{2}